本文共 1585 字,大约阅读时间需要 5 分钟。
Baby Badawy's first words were "AND 0 SUM BIG", so he decided to solve the following problem. Given two integers nn and kk, count the number of arrays of length nn such that:
Since the answer can be very large, print its remainder when divided by 109+7109+7.
Input
The first line contains an integer tt (1≤t≤10) — the number of test cases you need to solve.
Each test case consists of a line containing two integers nn and kk (1≤n≤105, 1≤k≤20).
Output
For each test case, print the number of arrays satisfying the conditions. Since the answer can be very large, print its remainder when divided by 109+7
Example
input
Copy
22 2100000 20
output
Copy
4226732710
Note
In the first example, the 44 arrays are:
题目大意:给你n和k,n是数组的长度,现在给你构造一个长度为n 的序列的三个条件,一个是序列中每个元素的值在0到2^k-1,二是所有元素与的值为0,三是让序列元素的和尽可能地大,问满足上述三个条件的序列有几个
解题思路:
题目告诉你数组中的每个数大于0小于2^k-1,又告诉你所以的结果玉等于零,那么我们很容易就想到将数转化为二进制思考问题,要是数组的和尽可能地大,那么数组中的每个数就尽可能地大,转化为二进制就是每个数的二进制位都是1.但是全为1就不满足相与为0,则我们就要将二进制位中的1位1转化为0,而且只能最多转化1位,因为转化的多了就不满足元素之和尽可能大了,我们现在有n个数,每个数有k位,那么答案就显而易见是 n^k
下面附上ac代码
#include#include #include #include #include #include #include using namespace std;typedef long long ll;#define M 1000000const int mod=1e9+7;ll a[3];int main(){ std::ios::sync_with_stdio(false); cin.tie(0),cout.tie(0); ll t; cin>>t; while(t--) { ll n,k,ans=1; cin>>n>>k; for(ll i=1;i<=k;i++) { ans=(ans*n)%mod; } cout< <
转载地址:http://nzlo.baihongyu.com/