博客
关于我
CF #716 (Div. 2) B. AND 0, Sum Big(思维+数学)
阅读量:281 次
发布时间:2019-03-01

本文共 621 字,大约阅读时间需要 2 分钟。

为了解决这个问题,我们需要计算满足特定条件的数组的数量。给定两个整数 nk,其中 n 是数组的长度,k 是每个元素的二进制位数。我们需要找到满足以下条件的数组数量:

  • 数组的每个元素都在 02^k - 1 之间。
  • 数组元素的按位与为 0
  • 数组的和尽可能大。
  • 方法思路

    为了使数组的和尽可能大,每个元素应该尽可能地大。然而,按位与为 0 的条件限制了每个元素的构造方式。对于每个二进制位,至少有一个元素在该位上必须是 0。因此,我们可以独立地处理每个二进制位,计算每个位上至少有一个元素为 0 的情况数,然后将各个位的情况数相乘。

    对于每个二进制位,我们可以选择 n 个元素中的任意一个来设置为 0,因此每个位的情况数是 n 种。由于有 k 个二进制位,总的情况数是 n^k。最后,我们对结果取模 10^9 + 7 来处理大数问题。

    解决代码

    MOD = 10**9 + 7t = int(input())for _ in range(t):    n, k = map(int, input().split())    result = pow(n, k, MOD)    print(result)

    代码解释

  • 读取输入:首先读取测试用例的数量 t
  • 处理每个测试用例:对于每个测试用例,读取 nk
  • 计算结果:使用快速幂算法计算 n^k % MOD,并打印结果。
  • 这种方法高效地处理了大数问题,并且确保了结果在合理范围内。

    转载地址:http://nzlo.baihongyu.com/

    你可能感兴趣的文章
    Nginx 学习总结(17)—— 8 个免费开源 Nginx 管理系统,轻松管理 Nginx 站点配置
    查看>>
    Nginx 我们必须知道的那些事
    查看>>
    oauth2-shiro 添加 redis 实现版本
    查看>>
    OAuth2.0_JWT令牌-生成令牌和校验令牌_Spring Security OAuth2.0认证授权---springcloud工作笔记148
    查看>>
    OAuth2.0_授权服务配置_Spring Security OAuth2.0认证授权---springcloud工作笔记140
    查看>>
    Objective-C实现A-Star算法(附完整源码)
    查看>>
    Objective-C实现area under curve曲线下面积算法(附完整源码)
    查看>>
    Objective-C实现atoi函数功能(附完整源码)
    查看>>
    Objective-C实现base64加密和base64解密算法(附完整源码)
    查看>>
    Objective-C实现base85 编码算法(附完整源码)
    查看>>
    Objective-C实现basic graphs基本图算法(附完整源码)
    查看>>
    Objective-C实现BCC校验计算(附完整源码)
    查看>>
    Objective-C实现bead sort珠排序算法(附完整源码)
    查看>>
    Objective-C实现BeadSort珠排序算法(附完整源码)
    查看>>
    Objective-C实现bellman ford贝尔曼福特算法(附完整源码)
    查看>>
    Objective-C实现bellman-ford贝尔曼-福特算法(附完整源码)
    查看>>
    Objective-C实现bellman-ford贝尔曼-福特算法(附完整源码)
    查看>>
    Objective-C实现BellmanFord贝尔曼-福特算法(附完整源码)
    查看>>
    Objective-C实现BF算法 (附完整源码)
    查看>>
    Objective-C实现binary exponentiation二进制幂运算算法(附完整源码)
    查看>>